

Safety Data Sheet

© 2023, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document group:
 31-6664-2
 Version number:
 3.00

 Issue Date:
 11/06/2023
 Supersedes date:
 10/12/2018

This Safety Data Sheet has been prepared in accordance with the New Zealand, Hazardous Substances (Safety Data Sheets) Notice 2017.

IDENTIFICATION:

1.1. Product identifier

3M[™] Imprint[™] 4 Super Quick Ultra-Light Refill (71491)

Product Identification Numbers

70-2011-4146-5 UU-0098-0471-5

1.2. Recommended use and restrictions on use

Recommended use

Dental Product, Impression Material

Restrictions on use

For use by dental professionals only.

1.3. Supplier's details

Address: 3M New Zealand Ltd, 94 Apollo Drive, Rosedale 0632, Auckland

Telephone: (09) 477 4040

E Mail: innovation@nz.mmm.com

Website: 3m.co.nz

1.4. Emergency telephone number

24 hr Medical Emergency, National Poisons Centre, 0800 764 766 (0800 POISON)

This product is a kit or a multipart product which consists of multiple, independently packaged components. A Safety Data Sheet for each of these components is included. Please do not separate the component Safety Data Sheets from this cover page. The document numbers of the SDSs for components of this product are:

31-4903-6, 31-4910-1

One or more components of this KIT is classified as a hazardous substance in accordance with the relevant criteria of the HSNO Act 1996 and the Hazardous Substances (Hazard Classification) Notice 2020.

TRANSPORT INFORMATION

NOT HAZARDOUS FOR TRANSPORT

Revision information:

Complete document review.

The information in this Safety Data Sheet (SDS) is believed to be correct as of the date of issue. TO THE EXTENT PERMITTED BY LAW, 3M MAKES NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluates the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application. 3M provides information in electronic form as a service to customers. Due to the remote possibility of electronic transfer may have resulted in errors, omissions or alterations in this information; 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from 3M.

3M New Zealand SDS are available at 3M New Zealand Website: http://solutions.3mnz.co.nz

Safety Data Sheet

© 2023, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document group:
 31-4903-6
 Version number:
 3.00

 Issue Date:
 11/06/2023
 Supersedes date:
 09/12/2018

This Safety Data Sheet has been prepared in accordance with the New Zealand, Hazardous Substances (Safety Data Sheets) Notice 2017.

SECTION 1: Identification

1.1. Product identifier

3M™ Imprint™ 4 Super Quick Ultra-Light Base

1.2. Recommended use and restrictions on use

Recommended use

Dental Product, Impression Material

Restrictions on use

For use by dental professionals only.

1.3. Supplier's details

Address: 3M New Zealand Ltd, 94 Apollo Drive, Rosedale 0632, Auckland

Telephone: (09) 477 4040

E Mail: innovation@nz.mmm.com

Website: 3m.co.nz

1.4. Emergency telephone number

24 hr Medical Emergency, National Poisons Centre, 0800 764 766 (0800 POISON)

SECTION 2: Hazard identification

Classified as hazardous in accordance with the relevant criteria of the HSNO Act 1996 and the Hazardous Substances (Hazard Classification) Notice 2020.

Refer to Section 14 of this Safety Data Sheet for product Dangerous Goods Classification.

2.1. Classification of the substance or mixture

Hazardous to the aquatic environment chronic: Category 3

2.2. Label elements SIGNAL WORD

Not applicable.

Symbols:

Not applicable.

3M™ Imprint™ 4 Super Quick Ultra-Light Base

HAZARD STATEMENTS:

H412 Harmful to aquatic life with long lasting effects.

PRECAUTIONARY STATEMENTS

Prevention

P273 Avoid release to the environment.

Disposal

P501 Dispose of contents/container in accordance with applicable

local/regional/national/international regulations.

SECTION 3: Composition/information on ingredients

Ingredient	CAS Nbr	% by Weight
Cristobalite	14464-46-1	20 - 40
Vinyl-polydimethyl siloxane	68083-19-2	30 - 40
Dimethyl methyl hydrogen silicone fluid	68037-59-2	10 - 20
Poly(dimethylsiloxane)	63148-62-9	1 - 10
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis	67762-90-7	1 - 10
products with silica		
Allyltrimethylsilane	762-72-1	< 5
Polyalkyleneoxide modified heptamethyltrisiloxone	27306-78-1	< 5
Fluorinated polyether	Trade Secret	< 2
Quartz	14808-60-7	< 0.5
Oils, mint, Mentha arvensis piperascens	68917-18-0	< 0.5

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

No need for first aid is anticipated. If symptoms develop, remove the affected person to fresh air. Get medical attention.

Skin contact

Wash with soap and water. If signs/symptoms develop, get medical attention.

Eve contact

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

No critical symptoms or effects. See Section 11.1, information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

3M™ Imprint™ 4 Super Quick Ultra-Light Base

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

SubstanceConditionCarbon monoxide.During combustion.Carbon dioxide.During combustion.Irritant vapours or gases.During combustion.

5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

5.4. Hazchem code: Not applicable.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

Refer to Section 15 - Controls for more information

7.1. Precautions for safe handling

Avoid prolonged or repeated skin contact. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Avoid contact with oxidising agents (eg. chlorine, chromic acid etc.) Do not get in eyes.

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidising agents. Store away from amines.

7.3. Certified handler

Not required

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient Dust, inert or nuisance	CAS Nbr 14464-46-1	Agency New Zealand WES	Limit type TWA(as respirable dust)(8 hours):3 mg/m3;TWA(as inhalable dust)(8 hours):10 mg/m3	Additional comments
Glass filaments	14464-46-1	New Zealand WES	TWA(Respirable fibers)(8 hours):1 f/mL;TWA(as respirable dust)(8 hours):1 f/mL;TWA(as inhalable dust)(8 hours):5 mg/m3	
Silica, crystalline (airborne particles of respirable size)	14464-46-1	New Zealand WES	TWA(as respirable dust)(8 hours):0.05 mg/m3	Carcinogenicity Category 1, carc HCA, Confirmed human carcinogen
Quartz	14808-60-7	ACGIH	TWA(respirable fraction):0.025 mg/m3	A2: Suspected human carcin.
Silica, crystalline (airborne particles of respirable size)	14808-60-7	New Zealand WES	TWA(as respirable dust)(8 hours):0.05 mg/m3	Carcinogenicity Category 1, carc HCA, Confirmed human carcinogen

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

CMRG: Chemical Manufacturer's Recommended Guidelines New Zealand WES: New Zealand Workplace Exposure Standards.

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit ppm: parts per million

mg/m3: milligrams per cubic metre

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Use in a well-ventilated area.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety glasses with side shields.

Refer AS/NZS 1336 - Recommended practices for occupational eye protection and for performance specifications AS/NZS 1337, Parts 1 - 6 - Personal eye-protection.

Skin/hand protection

See Section 7.1 for additional information on skin protection.

Respiratory protection

None required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

 into mation on basic physical and chemical properties				
Physical state	Solid.			

Specific Physical Form:	Paste	
Colour	White	
Odour	Light Minty	
Odour threshold	No data available.	
рН	Not applicable.	
Melting point/Freezing point	Not applicable.	
Boiling point/Initial boiling point/Boiling range	Not applicable.	
Flash point	No flash point	
Evaporation rate	Not applicable.	
Flammability (solid, gas)	Not classified	
Flammable Limits(LEL)	Not applicable.	
Flammable Limits(UEL)	Not applicable.	
Vapour pressure	Not applicable.	
Vapor Density and/or Relative Vapor Density	No data available.	
Density	1.1 g/cm3 - 1.3 g/cm3	
Relative density	1.1 - 1.3 [<i>Ref Std</i> :WATER=1]	
Water solubility	Negligible	
Solubility- non-water	No data available.	
Partition coefficient: n-octanol/water	No data available.	
Autoignition temperature	Not applicable.	
Decomposition temperature	No data available.	
Viscosity/Kinematic Viscosity	No data available.	
Volatile organic compounds (VOC)	Not applicable.	
Percent volatile	Not applicable.	
VOC less H2O & exempt solvents	Not applicable.	

SECTION 10: Stability and reactivity

10.1 Reactivity

This material is considered to be non reactive under normal use conditions This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.4 Conditions to avoid

Heat.

10.5 Incompatible materials

Amines.

Strong acids.

Strong bases.

Strong oxidising agents.

10.6 Hazardous decomposition products

Substance Condition

None known.

Refer to Section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

This product may have a characteristic odour; however, no adverse health effects are anticipated.

Skin contact

Mild Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, and dryness.

Eye contact

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea.

Additional Health Effects:

Carcinogenicity:

Exposures needed to cause the following health effect(s) are not expected during normal, intended use:

Contains a chemical or chemicals which can cause cancer.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Vinyl-polydimethyl siloxane	Dermal	Rabbit	LD50 > 15,440 mg/kg
Vinyl-polydimethyl siloxane	Ingestion	Rat	LD50 > 15,440 mg/kg
Cristobalite	Dermal		LD50 estimated to be > 5,000 mg/kg
Cristobalite	Ingestion		LD50 estimated to be > 5,000 mg/kg
Dimethyl methyl hydrogen silicone fluid	Dermal	Rabbit	LD50 > 2,000 mg/kg
Dimethyl methyl hydrogen silicone fluid	Ingestion	Rat	LD50 > 2,000 mg/kg
Poly(dimethylsiloxane)	Dermal	Rabbit	LD50 > 19,400 mg/kg
Poly(dimethylsiloxane)	Ingestion	Rat	LD50 > 17,000 mg/kg
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	Dermal	Rabbit	LD50 > 5,000 mg/kg
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 0.691 mg/l
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Rat	LD50 > 5,110 mg/kg
Polyalkyleneoxide modified heptamethyltrisiloxone	Dermal	Rabbit	LD50 > 2,000 mg/kg

3MTM ImprintTM 4 Super Quick Ultra-Light Base

Polyalkyleneoxide modified heptamethyltrisiloxone	Inhalation- Dust/Mist (4 hours)	Rat	LC50 2 mg/l
Polyalkyleneoxide modified heptamethyltrisiloxone	Ingestion	Rat	LD50 > 2,000 mg/kg
Allyltrimethylsilane	Dermal	Professio nal judgeme nt	LD50 estimated to be 2,000 - 5,000 mg/kg
Allyltrimethylsilane	Ingestion	similar compoun ds	LD50 estimated to be 2,000 - 5,000 mg/kg
Fluorinated polyether	Dermal	Professio nal judgeme nt	LD50 estimated to be > 5,000 mg/kg
Fluorinated polyether	Ingestion	Rat	LD50 > 1,000 mg/kg
Oils, mint, Mentha arvensis piperascens	Dermal	Rabbit	LD50 > 5,000 mg/kg
Oils, mint, Mentha arvensis piperascens	Ingestion	Rat	LD50 1,240 mg/kg
Quartz	Dermal		LD50 estimated to be > 5,000 mg/kg
Quartz	Ingestion		LD50 estimated to be > 5,000 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Vinyl-polydimethyl siloxane	Rabbit	No significant irritation
Cristobalite	Professio nal judgemen t	No significant irritation
Dimethyl methyl hydrogen silicone fluid	Rabbit	No significant irritation
Poly(dimethylsiloxane)	Rabbit	No significant irritation
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	Rabbit	No significant irritation
Polyalkyleneoxide modified heptamethyltrisiloxone	Rabbit	No significant irritation
Allyltrimethylsilane	Not available	Irritant
Oils, mint, Mentha arvensis piperascens	Rabbit	Mild irritant
Quartz	Professio nal	No significant irritation
	judgemen t	

Serious Eve Damage/Irritation

Name	Species	Value
Vinyl-polydimethyl siloxane	Rabbit	Mild irritant
Dimethyl methyl hydrogen silicone fluid	Rabbit	Mild irritant
Poly(dimethylsiloxane)	Rabbit	No significant irritation
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products	Rabbit	No significant irritation
with silica		
Polyalkyleneoxide modified heptamethyltrisiloxone	Rabbit	Severe irritant
Allyltrimethylsilane	Not	Severe irritant
	available	
Oils, mint, Mentha arvensis piperascens	In vitro	Severe irritant
	data	

Sensitisation:

Skin Sensitisation

Name	Species	Value

3MTM ImprintTM 4 Super Quick Ultra-Light Base

Dimethyl methyl hydrogen silicone fluid	Guinea	Not classified
	pig	
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products	Human	Not classified
with silica	and	
	animal	
Polyalkyleneoxide modified heptamethyltrisiloxone	Guinea	Not classified
	pig	
Oils, mint, Mentha arvensis piperascens	Guinea	Sensitising
	pig	

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Cristobalite	In Vitro	Some positive data exist, but the data are not sufficient for classification
Cristobalite	In vivo	Some positive data exist, but the data are not sufficient for classification
Dimethyl methyl hydrogen silicone fluid	In Vitro	Not mutagenic
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	In Vitro	Not mutagenic
Polyalkyleneoxide modified heptamethyltrisiloxone	In Vitro	Not mutagenic
Polyalkyleneoxide modified heptamethyltrisiloxone	In vivo	Not mutagenic
Allyltrimethylsilane	In Vitro	Not mutagenic
Quartz	In Vitro	Some positive data exist, but the data are not sufficient for classification
Quartz	In vivo	Some positive data exist, but the data are not sufficient for classification

Carcinogenicity

<u>cur emogenicity</u>			
Name	Route	Species	Value
Cristobalite	Inhalation	Human	Carcinogenic.
		and	
		animal	
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester,	Not	Mouse	Some positive data exist, but the data are not
hydrolysis products with silica	specified.		sufficient for classification
Quartz	Inhalation	Human	Carcinogenic.
		and	
		animal	

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesis
Polyalkyleneoxide modified heptamethyltrisiloxone	Ingestion	Not classified for reproduction and/or development	Rat	NOAEL 450 mg/kg/day	premating & during gestation
Fluorinated polyether	Ingestion	Not classified for reproduction and/or development	Rat	NOAEL 1,000 mg/kg/day	premating into lactation
Fluorinated polyether	Ingestion	Not classified for female reproduction	Rat	NOAEL 1,000	premating into lactation

3M™ Imprint™ 4 Super Quick Ultra-Light Base

				mg/kg/day	
Fluorinated polyether	Ingestion	Not classified for male reproduction	Rat	NOAEL 1,000	premating into lactation
				mg/kg/day	

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Allyltrimethylsilane	Inhalation	respiratory irritation	May cause respiratory irritation	Not available	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Cristobalite	Inhalation	silicosis	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure
2-Propenoic acid, 2- methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure
Fluorinated polyether	Ingestion	auditory system heart endocrine system hematopoietic system liver immune system muscles nervous system eyes	Not classified	Rat	NOAEL 1,000 mg/kg/day	28 days
Quartz	Inhalation	silicosis	Causes damage to organs through	Human	NOAEL Not	occupational
			prolonged or repeated exposure		available	exposure

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

No product test data available.

Material	CAS Number	Organism	Type	Exposure	Test endpoint	Test result
Cristobalite	14464-46-1	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
Vinyl-	68083-19-2	N/A	Data not	N/A	N/A	N/A
polydimethyl			available or			
siloxane			insufficient for			

			classification			
Dimethyl methyl hydrogen silicone fluid	68037-59-2	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
Poly(dimethyls iloxane)	63148-62-9	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl) propyl ester, hydrolysis products with silica	67762-90-7	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
	762-72-1	Green algae	Experimental	72 hours	ErC50	>1 mg/l
Allyltrimethyls ilane	762-72-1	Water flea	Experimental	48 hours	EC50	1.6 mg/l
Allyltrimethyls ilane	762-72-1	Green algae	Estimated	72 hours	ErC10	1.1 mg/l
Polyalkyleneox ide modified heptamethyltris iloxone	27306-78-1	Green algae	Estimated	96 hours	EC50	32 mg/l
Polyalkyleneox ide modified heptamethyltris iloxone	27306-78-1	Rainbow trout	Estimated	96 hours	LC50	4.5 mg/l
Polyalkyleneox ide modified heptamethyltris iloxone	27306-78-1	Water flea	Estimated	48 hours	LC50	23.4 mg/l
Fluorinated polyether	Trade Secret	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
Oils, mint, Mentha arvensis piperascens	68917-18-0	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
Quartz	14808-60-7	Green algae	Estimated	72 hours	EC50	440 mg/l
Quartz	14808-60-7	Water flea	Estimated	48 hours	EC50	7,600 mg/l
Quartz	14808-60-7	Zebra Fish	Estimated	96 hours	LC50	5,000 mg/l
Quartz	14808-60-7	Green algae	Estimated	72 hours	NOEC	60 mg/l

12.2. Persistence and degradability

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Cristobalite	14464-46-1	Data not	N/A	N/A	N/A	N/A
		availbl-				
		insufficient				

Vinyl- polydimethyl siloxane	68083-19-2	Data not availbl-insufficient	N/A	N/A	N/A	N/A
Dimethyl methyl hydrogen silicone fluid	68037-59-2	Data not availbl- insufficient	N/A	N/A	N/A	N/A
Poly(dimethyls iloxane)	63148-62-9	Data not availbl-insufficient	N/A	N/A	N/A	N/A
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl) propyl ester, hydrolysis products with silica	67762-90-7	Data not availbl- insufficient	N/A	N/A	N/A	N/A
Allyltrimethyls ilane	762-72-1	Experimental Biodegradation	28 days	BOD	10 %BOD/ThO D	OECD 301F - Manometric respirometry
Polyalkyleneox ide modified heptamethyltris iloxone	27306-78-1	Modeled Biodegradation	28 days	BOD	1 %BOD/ThO D	Catalogic TM
Fluorinated polyether	Trade Secret	Data not availbl-insufficient	N/A	N/A	N/A	N/A
Oils, mint, Mentha arvensis piperascens	68917-18-0	Data not availbl- insufficient	N/A	N/A	N/A	N/A
Quartz	14808-60-7	Data not availbl-insufficient	N/A	N/A	N/A	N/A

12.3 : Bioaccumulative potential

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Cristobalite	14464-46-1	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Vinyl- polydimethyl siloxane	68083-19-2	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Dimethyl methyl hydrogen silicone fluid	68037-59-2	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Poly(dimethyls iloxane)	63148-62-9	Data not available or insufficient for classification	N/A	N/A	N/A	N/A

2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl) propyl ester, hydrolysis products with silica	67762-90-7	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Allyltrimethyls ilane	762-72-1	Modeled Bioconcentrati on		Bioaccumulatio n factor	220	Catalogic [™]
Allyltrimethyls ilane	762-72-1	Experimental Bioconcentrati on		Log Kow	4.64	OECD 117 log Kow HPLC method
Polyalkyleneox ide modified heptamethyltris iloxone	27306-78-1	Modeled Bioconcentrati on		Bioaccumulatio n factor	331	Catalogic™
Fluorinated polyether	Trade Secret	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Oils, mint, Mentha arvensis piperascens	68917-18-0	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Quartz	14808-60-7	Data not available or insufficient for classification	N/A	N/A	N/A	N/A

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available

SECTION 13: Disposal considerations

13.1. Disposal methods

In accordance with the Hazardous Substances (Disposal) Notice 2017 and the relevant criteria of the HSNO Act 1996.

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes. Empty and clean product containers may be disposed as non-hazardous waste. Consult your specific regulations and service providers to determine available options and requirements. Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste.

Packaging (that may or may not contain any residual substance) may be lawfully disposed of by householders or other consumers through public or commercial waste collection services.

SECTION 14: Transport Information

New Zealand Land Transport Rule: Dangerous Goods - Road/Rail Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

Hazchem Code: Not applicable.

IERG: Not applicable.

International Air Transport Association (IATA) - Air Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable.
Sub Risk: Not applicable.
Packing Group: Not applicable.

International Maritime Dangerous Goods Code (IMDG) - Marine Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable.
Sub Risk: Not applicable.
Packing Group: Not applicable.
Marine Pollutant: Not applicable.

SECTION 15: Regulatory information

HSNO Approval number HSR002558

Group standard name Dental Products (Subsidiary Hazard) Group Standard 2020

HSNO Hazard classification Refer to Section 2: Hazard identification

NZ Inventory of Chemicals (NZIoC) Status

All applicable chemical ingredients in this material are in compliance with NZIoC listing requirements.

Controls in accordance with The Health and Safety at Work Act 2015, Health and Safety at Work (Hazardous Substances) Regulations 2017 and the HSNO Act 1996, Hazardous Substances (Hazardous Property Controls) Notice 2017

Certified handler Not required
Location Compliance Certificate Not required
Hazardous atmosphere zone Not required
Fire extinguishers Not required

Emergency response plan 100 L or 100 kg (for Hazardous to the aquatic environment Category 1

substances); or 1 000 L or 1 000 kg (for Acute toxicity Category 4, Skin sensitisation Category 1, Respiratory sensitisation Category 1, Hazardous to the aquatic environment Category 2 or Hazardous to the aquatic environment Category 3 substances); or 10 000 L or 10 000 kg (for Germ cell mutagenicity Category 1, Reproductive toxicity Category 1, Specific target organ toxicity Category 1, Serious eye damage Category 1, Hazardous to the aquatic

environment Category 4 substances)

Secondary containment 100 L or 100 kg (for Hazardous to the aquatic environment Category 1

substances); or 1 000 L or 1 000 kg (for Acute toxicity Category 4, Skin sensitisation Category 1, Respiratory sensitisation Category 1, Hazardous to the aquatic environment Category 2 or Hazardous to the aquatic environment Category 3 substances); or 10 000 L or 10 000 kg (for Germ cell mutagenicity Category 1, Reproductive toxicity Category 1, Specific target organ toxicity

Tracking Warning signage

Category 1, Serious eye damage Category 1, Hazardous to the aquatic environment Category 4 substances)

Not required

100 L or 100 kg (for Hazardous to the aquatic environment Category 1 substances); or 1 000 L or 1 000 kg (for Serious eye damage Category 1, Hazardous to the aquatic environment Category 2 or Hazardous to the aquatic environment Category 3 substances); or 10 000 L or 10 000 kg (for Acute toxicity Category 4 or Hazardous to the aquatic environment Category 4 substances)

SECTION 16: Other information

Revision information:

Complete document review.

Document group:	31-4903-6	Version number:	3.00
Issue Date:	11/06/2023	Supersedes date:	09/12/2018

Key to abbreviations and acronyms

GHS refers to the Globally Harmonised System of Classification and Labelling of Chemicals, 7th revised edition of 2017 **HSNO** means Hazardous Substances and New Organisms Act 1996

The information in this Safety Data Sheet (SDS) is believed to be correct as of the date of issue. TO THE EXTENT PERMITTED BY LAW, 3M MAKES NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluates the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application. 3M provides information in electronic form as a service to customers. Due to the remote possibility of electronic transfer may have resulted in errors, omissions or alterations in this information; 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from 3M.

3M New Zealand SDS are available at 3M New Zealand Website: http://solutions.3mnz.co.nz

Safety Data Sheet

© 2023, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document group:
 31-4910-1
 Version number:
 3.00

 Issue Date:
 11/06/2023
 Supersedes date:
 10/12/2018

This Safety Data Sheet has been prepared in accordance with the New Zealand, Hazardous Substances (Safety Data Sheets) Notice 2017.

SECTION 1: Identification

1.1. Product identifier

3M[™] Imprint[™] 4 Super Quick Ultra-Light Catalyst

1.2. Recommended use and restrictions on use

Recommended use

Dental Product, Impression Material

Restrictions on use

For use by dental professionals only.

1.3. Supplier's details

Address: 3M New Zealand Ltd, 94 Apollo Drive, Rosedale 0632, Auckland

Telephone: (09) 477 4040

E Mail: innovation@nz.mmm.com

Website: 3m.co.nz

1.4. Emergency telephone number

24 hr Medical Emergency, National Poisons Centre, 0800 764 766 (0800 POISON)

SECTION 2: Hazard identification

Not classified as hazardous in accordance with the relevant criteria of the HSNO Act 1996 and the Hazardous Substances (Hazard Classification) Notice 2020.

Refer to Section 14 of this Safety Data Sheet for product Dangerous Goods Classification.

2.1. Classification of the substance or mixture

Not classified as hazardous.

2.2. Label elements SIGNAL WORD

Not applicable.

Symbols:

Not applicable.

SECTION 3: Composition/information on ingredients

Ingredient	CAS Nbr	% by Weight
Vinyl terminated polydimethylsiloxane	68083-19-2	30 - 50
Cristobalite	14464-46-1	30 - 40
Poly(dimethylsiloxane)	63148-62-9	5 - 20
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis	67762-90-7	1 - 10
products with silica		

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

No need for first aid is anticipated.

Eve contact

Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

No critical symptoms or effects. See Section 11.1, information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

In case of fire: Use a fire fighting agent suitable for ordinary combustible material such as water or foam to extinguish.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

SubstanceConditionCarbon monoxide.During combustion.Carbon dioxide.During combustion.Irritant vapours or gases.During combustion.

5.3. Special protective actions for fire-fighters

Wear full protective clothing, including helmet, self-contained, positive pressure or pressure demand breathing apparatus, bunker coat and pants, bands around arms, waist and legs, face mask, and protective covering for exposed areas of the head.

5.4. Hazchem code: Not applicable.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

Refer to Section 15 - Controls for more information

7.1. Precautions for safe handling

Avoid prolonged or repeated skin contact. Do not eat, drink or smoke when using this product. Wash thoroughly after handling.

7.2. Conditions for safe storage including any incompatibilities

Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidising agents. Store away from amines.

7.3. Certified handler

Not required

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

for the component.				
Ingredient	CAS Nbr	Agency	Limit type	Additional comments
Cristobalite	14464-46-1	ACGIH	TWA(respirable fraction):0.025 mg/m3	A2: Suspected human carcin.
Dust, inert or nuisance	14464-46-1	New Zealand WES	TWA(as respirable dust)(8 hours):3 mg/m3;TWA(as inhalable dust)(8 hours):10 mg/m3	
Kieselguhr, soda ash flux-calcined	14464-46-1	New Zealand WES	TWA(8 hours):10 mg/m3	
Silica, crystalline (airborne particles of respirable size) ACGIH: American Conference of Government	14464-46-1	New Zealand WES	TWA(as respirable dust)(8 hours):0.05 mg/m3	Class-subclass 6.7, care HCA
AIHA: American Industrial Hygiene Assoc		Hygicilisis		

CMRG: Chemical Manufacturer's Recommended Guidelines New Zealand WES: New Zealand Workplace Exposure Standards.

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit ppm: parts per million

mg/m³: milligrams per cubic metre

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Use in a well-ventilated area.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Safety glasses with side shields.

Refer AS/NZS 1336 - Recommended practices for occupational eye protection and for performance specifications AS/NZS 1337, Parts 1 - 6 - Personal eye-protection.

Skin/hand protection

See Section 7.1 for additional information on skin protection.

Respiratory protection

None required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

·
Solid.
Paste
Orange
Slight Odour, Characteristic Odour
No data available.
Not applicable.
Not applicable.
Not applicable.
No flash point
Not applicable.
Not classified
Not applicable.
Not applicable.
No data available.
No data available.
1.2 g/cm3 - 1.4 g/cm3
1.2 - 1.4 [<i>Ref Std</i> :WATER=1]
Negligible
No data available.
No data available.
Not applicable.
No data available.
No data available.
Not applicable.
Not applicable.
Not applicable.

SECTION 10: Stability and reactivity

10.1 Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.4 Conditions to avoid

Heat.

10.5 Incompatible materials

Amines.

Strong acids, Strong bases, Strong oxidizing agents

10.6 Hazardous decomposition products

Substance

Condition

None known.

Refer to Section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

This product may have a characteristic odour; however, no adverse health effects are anticipated.

Skin contact

Contact with the skin during product use is not expected to result in significant irritation.

Eve contact

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea.

Additional Health Effects:

Carcinogenicity:

3MTM ImprintTM 4 Super Quick Ultra-Light Catalyst

Exposures needed to cause the following health effect(s) are not expected during normal, intended use: Contains a chemical or chemicals which can cause cancer.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Cristobalite	Dermal		LD50 estimated to be > 5,000 mg/kg
Cristobalite	Ingestion		LD50 estimated to be > 5,000 mg/kg
Vinyl terminated polydimethylsiloxane	Dermal	Rabbit	LD50 > 15,440 mg/kg
Vinyl terminated polydimethylsiloxane	Ingestion	Rat	LD50 > 15,440 mg/kg
Poly(dimethylsiloxane)	Dermal	Rabbit	LD50 > 19,400 mg/kg
Poly(dimethylsiloxane)	Ingestion	Rat	LD50 > 17,000 mg/kg
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	Dermal	Rabbit	LD50 > 5,000 mg/kg
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 0.691 mg/l
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Rat	LD50 > 5,110 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Skin Corrosion/Irritation		
Name	Species	Value
Cristobalite	Professio	No significant irritation
	nal	
	judgemen	
	t	
Vinyl terminated polydimethylsiloxane	Rabbit	No significant irritation
Poly(dimethylsiloxane)	Rabbit	No significant irritation
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products	Rabbit	No significant irritation
with silica		

Serious Eye Damage/Irritation

Name	Species	Value
Vinyl terminated polydimethylsiloxane	Rabbit	Mild irritant
Poly(dimethylsiloxane)	Rabbit	No significant irritation
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products	Rabbit	No significant irritation
with silica		

Sensitisation:

Skin Sensitisation

Skiii Schsitisation		
Name		Value
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products	Human	Not classified
with silica	and	
	animal	

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

	Name	Route	Value
-			

3MTM ImprintTM 4 Super Quick Ultra-Light Catalyst

Cristobalite	In Vitro	Some positive data exist, but the data are not sufficient for classification
Cristobalite	In vivo	Some positive data exist, but the data are not sufficient for classification
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester, hydrolysis products with silica	In Vitro	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
Cristobalite	Inhalation	Human	Carcinogenic.
		and	
		animal	
2-Propenoic acid, 2-methyl-, 3-(trimetoxysilyl)propyl ester,	Not	Mouse	Some positive data exist, but the data are not
hydrolysis products with silica	specified.		sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Not classified for female reproduction	Rat	NOAEL 509 mg/kg/day	1 generation
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Not classified for male reproduction	Rat	NOAEL 497 mg/kg/day	1 generation
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Ingestion	Not classified for development	Rat	NOAEL 1,350 mg/kg/day	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

For the component/components, either no data are currently available or the data are not sufficient for classification.

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Cristobalite	Inhalation	silicosis	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	occupational exposure
2-Propenoic acid, 2- methyl-, 3- (trimetoxysilyl)propyl ester, hydrolysis products with silica	Inhalation	respiratory system silicosis	Not classified	Human	NOAEL Not available	occupational exposure

Aspiration Hazard

For the component/components, either no data are currently available or the data are not sufficient for classification.

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

No product test data available.

Material	CAS Number	Organism	Туре	Exposure	Test endpoint	Test result
Vinyl terminated polydimethylsil oxane	68083-19-2	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
Cristobalite	14464-46-1	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
Poly(dimethyls iloxane)	63148-62-9	N/A	Data not available or insufficient for classification	N/A	N/A	N/A
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl) propyl ester, hydrolysis products with silica	67762-90-7	N/A	Data not available or insufficient for classification	N/A	N/A	N/A

12.2. Persistence and degradability

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Vinyl terminated polydimethylsil oxane	68083-19-2	Data not availbl- insufficient	N/A	N/A	N/A	N/A
Cristobalite	14464-46-1	Data not availbl- insufficient	N/A	N/A	N/A	N/A
Poly(dimethyls iloxane)	63148-62-9	Data not availbl-insufficient	N/A	N/A	N/A	N/A
2-Propenoic acid, 2-methyl-, 3- (trimetoxysilyl) propyl ester, hydrolysis products with silica	67762-90-7	Data not availbl- insufficient	N/A	N/A	N/A	N/A

12.3 : Bioaccumulative potential

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Vinyl	68083-19-2	Data not	N/A	N/A	N/A	N/A
terminated		available or				
polydimethylsil		insufficient for				

oxane		classification				
Cristobalite	14464-46-1	Data not available or	N/A	N/A	N/A	N/A
		insufficient for				
		classification				
Poly(dimethyls	63148-62-9		N/A	N/A	N/A	N/A
iloxane)		available or				
		insufficient for				
		classification				
2-Propenoic	67762-90-7	Data not	N/A	N/A	N/A	N/A
acid, 2-methyl-,		available or				
3-		insufficient for				
(trimetoxysilyl)		classification				
propyl ester,						
hydrolysis						
products with						
silica						

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Disposal methods

In accordance with the Hazardous Substances (Disposal) Notice 2017 and the relevant criteria of the HSNO Act 1996.

Dispose of waste product in a permitted industrial waste facility. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste.

Packaging (that may or may not contain any residual substance) may be lawfully disposed of by householders or other consumers through public or commercial waste collection services.

SECTION 14: Transport Information

New Zealand Land Transport Rule: Dangerous Goods - Road/Rail Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

Hazchem Code: Not applicable.

IERG: Not applicable.

International Air Transport Association (IATA) - Air Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

3MTM ImprintTM 4 Super Quick Ultra-Light Catalyst

International Maritime Dangerous Goods Code (IMDG) - Marine Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable.
Sub Risk: Not applicable.
Packing Group: Not applicable.
Marine Pollutant: Not applicable.

SECTION 15: Regulatory information

HSNO Approval number Not applicable Group standard name Not applicable

HSNO Hazard classification Refer to Section 2: Hazard identification

NZ Inventory of Chemicals (NZIoC) Status

All applicable chemical ingredients in this material are in compliance with NZIoC listing requirements.

Controls in accordance with The Health and Safety at Work Act 2015, Health and Safety at Work (Hazardous Substances) Regulations 2017 and the HSNO Act 1996, Hazardous Substances (Hazardous Property Controls) Notice 2017

Certified handler Not required Location Compliance Certificate Not required Not required Hazardous atmosphere zone Not required Fire extinguishers Emergency response plan Not required Not required Secondary containment Not required Tracking Warning signage Not required

SECTION 16: Other information

Revision information:

Complete document review.

Document group:	31-4910-1	Version number:	3.00
Issue Date:	11/06/2023	Supersedes date:	10/12/2018

Key to abbreviations and acronyms

GHS refers to the Globally Harmonised System of Classification and Labelling of Chemicals, 7th revised edition of 2017 HSNO means Hazardous Substances and New Organisms Act 1996

The information in this Safety Data Sheet (SDS) is believed to be correct as of the date of issue. TO THE EXTENT PERMITTED BY LAW, 3M MAKES NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluates the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application. 3M provides information in electronic form as a service to customers. Due to the remote possibility of electronic transfer may have resulted in errors, omissions or alterations in this information; 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from 3M.

3M New Zealand SDS are available at 3M New Zealand Website: http://solutions.3mnz.co.nz

3M [™] Imprint [™] 4 Super Quick Ultra-Light Catalyst						
y and the control of						